Pigment pattern evolution by differential deployment of neural crest and post-embryonic melanophore lineages in Danio fishes.
نویسندگان
چکیده
Latent precursors or stem cells of neural crest origin are present in a variety of post-embryonic tissues. Although these cells are of biomedical interest for roles in human health and disease, their potential evolutionary significance has been underappreciated. As a first step towards elucidating the contributions of such cells to the evolution of vertebrate form, we investigated the relative roles of neural crest cells and post-embryonic latent precursors during the evolutionary diversification of adult pigment patterns in Danio fishes. These pigment patterns result from the numbers and arrangements of embryonic melanophores that are derived from embryonic neural crest cells, as well as from post-embryonic metamorphic melanophores that are derived from latent precursors of presumptive neural crest origin. In the zebrafish D. rerio, a pattern of melanophore stripes arises during the larval-to-adult transformation by the recruitment of metamorphic melanophores from latent precursors. Using a comparative approach in the context of new phylogenetic data, we show that adult pigment patterns in five additional species also arise from metamorphic melanophores, identifying this as an ancestral mode of adult pigment pattern development. By contrast, superficially similar adult stripes of D. nigrofasciatus (a sister species to D. rerio) arise by the reorganization of melanophores that differentiated at embryonic stages, with a diminished contribution from metamorphic melanophores. Genetic mosaic and molecular marker analyses reveal evolutionary changes that are extrinsic to D. nigrofasciatus melanophore lineages, including a dramatic reduction of metamorphic melanophore precursors. Finally, interspecific complementation tests identify a candidate genetic pathway for contributing to the evolutionary reduction in metamorphic melanophores and the increased contribution of early larval melanophores to D. nigrofasciatus adult pigment pattern development. These results demonstrate an important role for latent precursors in the diversification of pigment patterns across danios. More generally, differences in the deployment of post-embryonic neural crest-derived stem cells or their specified progeny may contribute substantially to the evolutionary diversification of adult form in vertebrates, particularly in species that undergo a metamorphosis.
منابع مشابه
Evolutionary diversification of pigment pattern in Danio fishes: differential fms dependence and stripe loss in D. albolineatus.
The developmental bases for species differences in adult phenotypes remain largely unknown. An emerging system for studying such variation is the adult pigment pattern expressed by Danio fishes. These patterns result from several classes of pigment cells including black melanophores and yellow xanthophores, which differentiate during metamorphosis from latent stem cells of presumptive neural cr...
متن کاملOrigins of adult pigmentation: diversity in pigment stem cell lineages and implications for pattern evolution.
Teleosts comprise about half of all vertebrate species and exhibit an extraordinary diversity of adult pigment patterns that function in shoaling, camouflage, and mate choice and have played important roles in speciation. Here, we review studies that have identified several distinct neural crest lineages, with distinct genetic requirements, that give rise to adult pigment cells in fishes. These...
متن کاملZebrafish puma mutant decouples pigment pattern and somatic metamorphosis.
The genetic and developmental bases for trait expression and variation in adults are largely unknown. One system in which genes and cell behaviors underlying adult traits can be elucidated is the larval-to-adult transformation of zebrafish, Danio rerio. Metamorphosis in this and many other teleost fishes resembles amphibian metamorphosis, as a variety of larval traits (e.g., fins, skin, digesti...
متن کاملEmbryonic requirements for ErbB signaling in neural crest development and adult pigment pattern formation.
Vertebrate pigment cells are derived from neural crest cells and are a useful system for studying neural crest-derived traits during post-embryonic development. In zebrafish, neural crest-derived melanophores differentiate during embryogenesis to produce stripes in the early larva. Dramatic changes to the pigment pattern occur subsequently during the larva-to-adult transformation, or metamorpho...
متن کاملMutational analysis of endothelin receptor b1 (rose) during neural crest and pigment pattern development in the zebrafish Danio rerio.
Pigment patterns of fishes are a tractable system for studying the genetic and cellular bases for postembryonic phenotypes. In the zebrafish Danio rerio, neural crest-derived pigment cells generate different pigment patterns during different phases of the life cycle. Whereas early larvae exhibit simple stripes of melanocytes and silver iridophores in a background of yellow xanthophores, this pi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 131 24 شماره
صفحات -
تاریخ انتشار 2004